# Production Challenges

# Evolution of Architectures

Before 2006: Content-based filter, Collaborative filter

2006: Factorization-based Methods

2009: Learning to Rank; Gradient Boosting Decistion Tree (Pairwise Ranking)

2015: Wide & Deep , DeepFM/xDeepFM , DIN/DIEN , DLRM ,DCN

# Pros vs Cons

Unique challenges

  • Large Embedding Tables
  • Model Heterogenity : MLP, Transformers
  • Performance Variance: recommendation context, - model colocation

mlsys_nvidia_cv_vs_recommender

mlsys_nvidia_cv_vs_recommender

Pros:

  • Storage Capacity much larger
  • Compute Intensity is lower than CNN
  • Sparse Irregular memory accesses

mlsys_challenge_embedding_table

200 different recommender models running concurrently in FB

Three Types:

  • Embedding Dominated
  • MLP Dominated
  • Attention Dominated

mlsys_diff_facebook_model_arch

mlsys_rec_diff_model_arch

mlsys_optimal_batch_size_comp

mlsys_rec_diff_model_arch_layers

# References

Deep Recommender Systems at Facebook feat. Carole-Jean Wu | Stanford MLSys Seminar Episode 24 (opens new window)