Normally , you might run your models in an embedded enviornment. In those environments , you use c++.

The conversion from Python to C++ is enabled by Torch Script, a representation of a PyTorch model that can be understood, compiled and serialized by the Torch Script compiler

  1. Converting to Torchscript

Option A: Tracing


import torch
import torchvision

# An instance of your model.
model = torchvision.models.resnet18()

# An example input you would normally provide to your model's forward() method.
example = torch.rand(1, 3, 224, 224)

# Use torch.jit.trace to generate a torch.jit.ScriptModule via tracing.
traced_script_module = torch.jit.trace(model, example)

output = traced_script_module(torch.ones(1, 3, 224, 224))

Option B: Annotation You might want to use annotation, if your forward method had conditional logic

import torch

class MyModule(torch.jit.ScriptModule):
    def __init__(self, N, M):
        super(MyModule, self).__init__()
        self.weight = torch.nn.Parameter(torch.rand(N, M))

    @torch.jit.script_method
    def forward(self, input):
        if input.sum() > 0:
          output = self.weight.mv(input)
        else:
          output = self.weight + input
        return output

my_script_module = MyModule()
my_script_module.save("model.pt")


  1. Loading the model in C++
#include <torch/script.h> // One-stop header.

#include <iostream>
#include <memory>

int main(int argc, const char* argv[]) {
  if (argc != 2) {
    std::cerr << "usage: example-app <path-to-exported-script-module>\n";
    return -1;
  }

  // Deserialize the ScriptModule from a file using torch::jit::load().
  std::shared_ptr<torch::jit::script::Module> module = torch::jit::load(argv[1]);

  assert(module != nullptr);
  std::cout << "ok\n";
}